Open Access
Issue
E3S Web Conf.
Volume 548, 2024
X International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-X 2024)
Article Number 03008
Number of page(s) 6
Section Information Technologies, Automation Engineering and Digitization of Agriculture
DOI https://doi.org/10.1051/e3sconf/202454803008
Published online 12 July 2024
  1. G.V. Kumar, K. Prasanth, S.G. Raj, S. Sarathi, Fingerprint based authentication system with keystroke dynamics for realistic user, Sec. Int. Conf. on Current Trends In Engineering and Technology - ICCTET 2014 (Coimbatore, 2014), 206–209 [CrossRef] [Google Scholar]
  2. N.I. Daud, G.R. Haron, S.S. Othman, Adaptive authentication: Implementing random canvas fingerprinting as user attributes factor, 2017 IEEE Symp. on Computer Applications & Industrial Electronics (ISCAIE), (Langkawi, 2017), 152–156 [CrossRef] [Google Scholar]
  3. A.O. Iskhakova, A.Y. Iskhakov, R.V. Meshcheryakov, R. Bendrau, O. Melekova, Using a heatmap of user behavior in the problem of identifying the subject of an information security incident, Proc. of the SPIIRAS (Moscow, 2018), 147–171 [CrossRef] [Google Scholar]
  4. F. Wang, Y. Zhang, Study and Design of Intelligent Authentication System Based on Fingerprint Identification, 2009 Sec. Int. Symp. on Knowledge Acquisition and Modeling, (Wuhan, 2009), 170–173 [CrossRef] [Google Scholar]
  5. D. Hwang, H. Lee, G. Bae, S. Son, J. Kim, Fingerprint template management for higher accuracy in user authentication, 2018 Int. Conf. on Electronics, Information, and Communication (ICEIC) (Honolulu, 2018), 1–4 [Google Scholar]
  6. K.A. Abu Bakar, G.R. Haron, Adaptive authentication based on analysis of user behavior, 2014 Science and Information Conf. (London, 2014), 601–606 [CrossRef] [Google Scholar]
  7. T. Keatsamarn, C. Pintavirooj, Footprint Identification using Deep Learning, 2018 11th Biomedical Engineering Int. Conf. (BMEiCON) (Chiang Mai, 2018), 1–4 [Google Scholar]
  8. A.A. Salomatin, A. Iskhakov, R. Meshcheryakov, Application of the User’s Digital Footprint in the Adaptive Authentication Problem, 2021 Int. Siberian Conf. on Control and Communications (SIBCON) (Kazan, 2021), 1–5 [Google Scholar]
  9. S.V. Akram, S.K. Joshi, R. Deorari, Web Application Based Authentication System, 2022 Int. Interdisciplinary Humanitarian Conf. for Sustainability (IIHC) (Bengaluru, 2022), 1439–1443 [CrossRef] [Google Scholar]
  10. L. Bu, H. Cheng, M.A. Kinsy, Adaptive and Dynamic Device Authentication Using Lorenz Chaotic Systems, 2018 IEEE 61st Int. Midwest Symp. on Circuits and Systems (MWSCAS) (Windsor, 2018), 976–979 [CrossRef] [Google Scholar]
  11. E. Davarci, E. Anarim, User Identification on Smartphones with Motion Sensors and Touching Behaviors, 2022 30th Signal Processing and Communications Applications Conf. (SIU) (Safranbolu, 2022), 1–4 [Google Scholar]
  12. T. Gan, F. Lin, C. Chen, Y. Guo, Y. Zheng, China Communications 10(3), 76–81 (2013) [CrossRef] [Google Scholar]
  13. A. Salomatin, A. Iskhakov, R. Meshcheryakov, Formation of a digital footprint based on the characteristics of computer hardware to identity APCS, Users Proc. of the 2021 Int. Russian Automation Conf. (RusAutoCon) (Sochi, 2021), 314–320 browsers: 2015 Edition, Proc. of the 2015 9th Int. Conf. on Innovative Mobile and Internet Services in Ubiquitous Computing (Santa Catarina, 2015), 520-524 [CrossRef] [Google Scholar]
  14. A. ElBanna, N. Abdelbaki, Browsers fingerprinting motives, methods, and countermeasures, Proc. of the 2018 Int. Conf. on Computer, Information and Telecommunication Systems (CITS) (Alsace, 2018), 978–982 [Google Scholar]
  15. S. Dong, F. Farha, S. Cui, H. Ning, J. Ma, CPG-FS: A CPU perfomance graph based device fingerprint scheme for devices identification and authentication, Proc. of the 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing (Fukuoka, 2019), 266–270 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.